The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management
Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject.
This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors--leading experts in financial modeling, machine learning, and quantitative research and analytics--employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book:
The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users.